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We investigate quantum fluctuations of both the bosonic and the fermionic sectors.

Keywords: Brane Dynamics in Gauge Theories, Gauge-gravity correspondence, Lattice

QCD, 1/N Expansion

ArXiv ePrint: 0907.1331

c© SISSA 2009 doi:10.1088/1126-6708/2009/11/064

mailto:christopher-doran@uiowa.edu
mailto:lpandoz@umich.edu
mailto:vincent-rodgers@uiowa.edu
mailto:kstiffle@gmail.com
http://arxiv.org/abs/0907.1331
http://dx.doi.org/10.1088/1126-6708/2009/11/064


J
H
E
P
1
1
(
2
0
0
9
)
0
6
4

Contents

1 Introduction 1

1.1 k-string ground state 3

1.1.1 The wealth of information in 2 + 1 dimensions 3

1.1.2 Representations for k-strings 4

1.2 Beyond the ground state: The Lüscher term 4
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1 Introduction

Since the emanation of Quantum Chromodynamics as the theory of the strong nuclear

force, serious theoretical and predictive challenges appeared due to the strongly coupled

nature of the theory at nuclear energies. What has emerged from these challenges is a

technical and computational acumen that has advanced our understanding of other theories

as well. Lattice gauge theory, advances in the Hamiltonian formulation of gauge theories,

and string theories (including the gauge/gravity correspondence) are three examples of

these powerful theoretical tools that have emerged from this quest. At present the ability

for theorists to match experimental data in the strongly coupled regime is very far from the

success achieved in the perturbative regime. For this reason, theorists sometimes resort to

comparing theories among themselves for states that are suitably accessible. For example

the mass gap of the pure Yang Mills sector has been observed by the lattice community for

some time and through string theory as well. For string theory, Polyakov gave a description

of the mass gap by including the extrinsic curvature to Nambu-Goto action [1], where one
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can show that asymptotic freedom implies a mass gap. The question of the mass gap for

2 + 1 dimensions was also addressed using the Hamiltonian formulation in [2, 3]. Through

this one sees that certain string theories and gauge theories belong to the same universality

class. Suitable configurations that are calculationally accessible to all of these methods give

theorists a standard for comparison. The k-string epitomizes such configurations. In this

note, we examine the gauge/gravity dual for a 2 + 1 dimensional k-string configuration

using the Cvetič, Gibbons, Lü, and Pope [4] (CGLP) supergravity background. Because

this background is dual to a 2 + 1 dimensional gauge theory, this configuration lends

itself well to comparisons of both lattice gauge theories and Hamiltonian approaches to

gauge theories.

Here we give a brief overview of k-strings and an outline of this note. For a more com-

plete review of k-strings, see [5]. k-strings are a configuration of SU(N) color sources which

result from k color sources in the fundamental representation stretched a large distance L

from k anti-color sources. The gauge/gravity correspondence has been used to explore the

relationship between certain configurations of low energy supergravity backgrounds and

low energy k-strings [6–10]. Many of these supergravity calculations have been done for

D3-branes, which are dual to four dimensional Yang-Mills theories. On the gauge theory

and lattice gauge theory side of the correspondence, much of the focus has been in three

dimensions [11–17]. Therefore the best test of the gauge/gravity correspondence through

k-string configurations is to find supergravity backgrounds which are dual to 3d gauge the-

ories. We will review in this paper the Cvetič, Gibbons, Lü, and Pope (CGLP) type IIA

solution which is one such supergravity background [4].

From the gauge theory side of things, the classical energy of strongly coupled k-strings

is found to follow either a sine law or a Casimir law:

Ek ∝ TkL k-string energy (1.1)

Tk ∝ N sin
kπ

N
sine law (1.2)

or

Tk ∝ k(N − k) Casimir law. (1.3)

The precise form of the tension appears to be inconclusive [11–19].

In this paper, we will investigate specifically the gauge theory dual to N stacked

D2-branes, and stacked fractional D2-branes sourcing the CGLP type IIA supergravity

background [4]. In this background, the low energy spectrum has been found to have a

slightly lower tension than both the Casimir and sine laws [7].

We probe this calculation further, by calculating the one loop quantum correction to

the low energy classical solution of the supergravity. Using vanishing boundary conditions

on the probe D-brane, we find the energy correction is dual to an SU(N) Lüscher term

with vanishing boundary conditions (i.e., the k-string ends on immovable color sources),

VLüscher = − π

6L
. (1.4)

This result can be compared directly to explicit lattice calculations for N = 4, 5 in [17] and

is the expected result as N increases.
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1.1 k-string ground state

The k-string tension provides the first level of comparison for various theories. In the

context of N = 2 supersymmetric theories, Douglas and Shenker [20], examined the N -

extended monopole condensation model of Seiberg and Witten for SU(2) [21] and found

a spectrum of string tension that obeys a sine law, Tk ∼ N sin (πkN ). In a precursor to

AdS/CFT, Hanany, Strassler and Zaffaroni were able to reproduce this spectrum of meson

by using an M-theory fivebrane approach to QCD (MQCD) [22]. The lattice community

has actively studied the k-string’s tension for some time [23–25]. One of the issues that

arises is whether these configurations exhibit a Casimir-like scaling

Tk ≈ k(1 − k/N)

for large N or a sine law where

Tk ∝ N sin

(

πk

N

)

.

Both of these behaviors respect the N -ality but on the one hand, the 1/N expansion of

QCD agrees with the sine law scaling [18, 19], while on the other hand lattice calculations

of [17] favor Casimir scaling (1/N).

1.1.1 The wealth of information in 2 + 1 dimensions

Because the analysis is tractable, examining the k-string configurations in 2+1 dimensions

gives a wealth of information. In [14] Karabali, Kim and Nair predict that the string

tensions in SU(N) gauge theories should be proportional to the quadratic Casimir of the

representation of the flux. Based on the idea of effective dimensional reduction driven by a

highly disordered vacuum, it was conjectured a long time ago [11–13] that this might also

hold in D = 2 + 1 and D = 3 + 1. There is some additional evidence for this hypothesis

from calculations of the potential between charges in various representations of SU(3).

For a given k the smallest Casimir arises for the totally antisymmetric representation,

and this should therefore provide the ground state k-string tension:

σk
σf

=
k(N − k)

N − 1
. (1.5)

This is the part of the Casimir Scaling hypothesis that we shall be mainly testing in

this paper. For this purpose it is useful to have an alternative conjecture that possesses

the correct general properties. A convenient and well-known example is provided by the

trigonometric form
σk
σf

=
sin kπ

N

sin π
N

, (1.6)

that was originally suggested on the basis of an M-theory approach to QCD [22] and has

appeared in the context of the gauge/gravity correspondence. In fact the full prediction of

Karabali et al. for σk is more specific than eq. (1.5), since it also predicts a value for σf in

terms of g2, and including this gives:

σR = e4
CACR

4π
, (1.7)
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where CA is the quadratic Casimir invariant for the adjoint representation defined as

facdf bcd = CAδ
ab. This may be written as:

σk
(g2N)2

=
1

8π

k(N − k)(N + 1)

N2
. (1.8)

Recent improvements to the Hamiltonian prediction of Karabali et al. [26] have moved the

value of σf to within −.3% to −2.8% of the lattice value.

1.1.2 Representations for k-strings

In [27, 28], Gomis and Passerini studied various representations of Wilson loops in N = 4

supersymmetric Yang-Mills as related to particular representations of the gauge group.

Inspired by this, we observe that since supergravity configurations and different quark

representations both form sets of topologically distinct objects, it is natural to look for an

identification between the two via the gauge/gravity correspondence. We postulate that

different supergravity backgrounds in the gauge/gravity correspondence can be identified

with symmetric and antisymmetric representations of the k-string. For the case of 2 + 1,

both the Cvetič, Gibbons, Lü, and Pope (CGLP) [4] and the Maldacena-Nastase (M-

Na) [29] supergravity backgrounds are relevant. We identify the following configurations

with the group representations:

• the probe D4 brane with world volume flux wrapping a three sphere in the CGLP

background = antisymmetric representation;

• the probe D3 brane with world volume flux wrapping a two sphere in the M-Na

background = symmetric representation.

Table 1 shows that CGLP k-strings seem to be closely related to the anti-symmetric

representation, as predicted, while at the same time, are closer to a Casimir law than a

sine law. However, we see that M-Na k-strings, which with a preliminary calculation, we

find to follow a sine law, don’t seem to align well with the symmetric represention, though

we expected them to.

The full table in 2 + 1, including all possible supergravity solutions with their cor-

responding brane embeddings, is not yet known. For example, other configurations to

be considered are the D6 branes in the CGLP background which would correspond to a

symmetric state, D5 brane in the MNa background [29] (antisymmetric), and the Witten

2+1 QCD (nonextremal D3-brane compactified on a circle). Further studies are needed to

validate this issue and determine how these geometries manifest the k-string tensor repre-

sentations. The question still remains as to where the mixed representations would fit into

the supergravity scenarios.

1.2 Beyond the ground state: The Lüscher term

A detailed study of the flux tube between a quark and an anti-quark is an important

window into the physics of confinement. A penetrating approach in this study is to consider

the effective action for such a string as an expansion in derivative terms. Lüscher and

– 4 –
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Tk/Tf from Various Methods

S=symmetric, A=antisymmetric, M=mixed, *=antisymmetric

Group k CGLP MNa(Sine) Casimir lattice Karabali-Nair

SU(4) 2 1.310 1.414 1.333
1.353(A) 1.332(A)

2.139(S) 2.400(S)

SU(5) 2 1.466 1.618 1.5 1.528* 1.529*

SU(6)

2 1.562 1.732 1.6
1.617(A) 1.601(A)

2.190(S) 2.286(S)

3 1.744 2.0 1.8

1.808(A) 1.800(A)

3.721(S) 3.859(S)

2.710(M) 2.830(M)

SU(8)

2 1.674 1.848 1.714 1.752* 1.741*

3 2.060 2.414 2.143 2.174* 2.177*

4 2.194 2.613 2.286 2.366* 2.322*

Table 1. Comparison of k-string tensions from various methods. The values quoted are Tk/Tf ,

where Tk is the k-string tension, and Tf is the fundamental string tension, i.e., k = 1. The CGLP

tension is calculated from the transcendental eqs. (2.54), (2.53); MNa(Sine) from eq. (2.55); Casimir

from eq. (1.3). The A, S, and M data are calculated directly from [30], the * data is quoted directly

from [17].

Weisz considered all terms allowed by symmetries and built an effective theory for the

excitations [31] and then went on to study the influence of the various terms on observables.

Aharony and Katzburn were able to take this up to six derivative couplings and show that

the full spectrum of the theory only depends on two free parameters [32], the string tension

σ and a regularization dependent mass µ. The quark-antiquark potential can be computed

and shown to be

V (L) = σL+ µ+
γ

L
+ O(1/L2), γ = − π

24
(d− 2), (1.9)

for large distances L, where d is the dimension of space-time. The 1/L correction in this

formula is a quantum effect and can be used to determine a universality class for a large

family of strings [33]. One remarkable property of the above expansion is that it sets in for

relatively small values of L, for example it was argued in [31] that for values around 0.5 fm

the above expansion is already valid.

Furthermore, there is an exponential reduction of the statistical errors in the lattice

calculations of Lüscher and Weisz [34] which allows them to compute the quark-antiquark

potential with high accuracy. Their results are completely consistent with theoretical model

within a 0.04% and 0.12% depending on the quark-antiquark separation.

We wish to compare the Lüsher term in eq. (1.9) to that calculated from holographic

models. The fundamental string is easy to find in most holographic models. It corresponds

to a static fundamental string whose main contribution to the energy comes form the

IR region of the dual supergravity background. Analyzing the massless modes of such

fundamental strings in various confining backgrounds is rather simple since it is equivalent

– 5 –
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to counting symmetries. Since only those massless modes contribute to the Lüscher term

we conclude that:

γfund
3d = − π

24
, (CGLP [4], M-Na [29] backgrounds),

γfund
4d = − π

12
, (KS [35], M-Núñez [36] backgrounds). (1.10)

As emphasized before, the above results come only from the massless modes. Namely in

3-dimensional models we have only one massless mode viz: Xi, i = 2. Similarly, in 4-

dimensional models, there are two massless modes: Xi with i = 2, 3, while all other modes

are massive, including the fermions.

Another very interesting configuration in confining theories is the one formed by k

quarks separated a distance L by k anti-quarks. This configuration, known as the k-string,

also contains an intricate structure of excitations. We have studied such configurations

at one-loop level in various supergravity backgrounds. We find that for both the KS and

CGLP backgrounds, the four-dimensional1 and three-dimensional theories have the same

Lüscher term:

γk−string4d = γk−string3d = −π
6
. (1.11)

There are four massless modes for each. Let us explain: from the holographic point of

view the difference comes from the fact that we have the standard massless Goldstone mode

for the fluctuations in the transverse direction to the corresponding brane configuration,

whereas the extra massless modes with respect to those of the fundamental string arise

from the gauge field that is necessary to include holographically to get a representation

characterized by k. In the case of the KS background our computation shows that there are

two extra massless degrees of freedom coming from the fluctuations of the gauge field [10].

We verify later in this paper that in the three-dimensional case, the gauge field contributes

three massless degrees of freedom to the Lüscher term.

2 k-strings from type II supergravity duals

2.1 The basic idea

In this section, we give a brief sketch of how to calculate low energy k-strings from a dual

supergravity theory. The k-string is thought of, from the supergravity dual, as a probe

Dp-brane with electromagnetic charge in its world volume

F = dA = Ftx dt ∧ dx+ Fθφ dθ ∧ dφ, (2.1)

embedded in a supergravity background.

This probe Dp-brane will wrap, or be tangent to, p + 1 out of the 10 bosonic super-

gravity coordinates, Xµ. The remaining 9 − p supergravity coordinates will act as scalar

fields, with dynamics on the probe Dp-brane. These scalar fields will enter into the action

1Here we correct a factor of a half missing in [10].
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for the probe Dp-brane through the dilaton, Φ, and the pullbacks of the other bosonic

supergravity sources

Fn+1 = dCn, H3 = dB2. (2.2)

In addition, we will have fermionic fields with dynamics on our probe Dp-brane as well.

The action we use for the probe Dp-brane, parametrized by ζ, is

SDp = −µp
∫

dp+1ζ e−Φ
√

− det (gab + Fab) + µp

∫

eF ∧
∑

q

Cq + Sf (2.3)

F = B2 + 2πα′F, µ−1
p = (2π)pα′(p+1)/2. (2.4)

where all of the fermionic fields are contained in Sf . The induced metric, gab, is the pullback

of the 10 dimensional supergravity metric Gµν

gab =
∂Xµ

∂ζa
∂Xν

∂ζb
Gµν , (2.5)

The generalization of this formula is how the n-forms listed in eq. (2.2) are pulled back to

the Dp-brane.

For the low energy solution, we follow [7] and set the fermions all to zero, Sf = 0,

consider bosonic fields constant on the Dp-brane coordinates, Xµ = Xµ
0 = constant, and

integrate out the spatial Dp-brane coordinates from the action, eq. (2.3), leaving us with

S =

∫

dtL(Aa, Ȧa,X
µ
0 ) (2.6)

This particular solution leaves only the gauge field on the probe Dp-brane, Aa with any

dynamics with which to calculate the low energy Hamiltonian, which is proportional to the

k-string tension, Tk:

H =
∂L
∂Ȧa

Ȧa − L = LTk (2.7)

2.2 Review of the CGLP background

Let us first review the CGLP type IIA supergravity solution. More details can be found

in [4, 7, 37]. The CGLP background is a solution with N coincident D2-branes

In the string frame, the CGLP solution with these sources is found to be

ds210 = GµνdX
µdXν = H−1/2dxαdxβηαβ +H1/2ds27, (2.8)

eΦ = gsH
1/4 (2.9)

where ηαβ is R
1,2, and

ds27 = l2
[

h2dr2 + a2(Dµi)2 + b2dΩ2
4

]

, (2.10)

X2 ≡ 1

2
ǫijkµ

iDµi ∧Dµk, J2 ≡ µiJ i, X3 ≡ dX2 = dJ2 (2.11)

– 7 –
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In the above, l, m, and gs are constants, and a, b, h, ui and H are functions of r.

h2 = (1 − r−4)−1, a2 =
1

4
r2(1 − r−4), b2 =

1

2
r2 (2.12)

u1 = r−4 + P (r)r−5(r4 − 1)−1/2, u2 = −1

2
(r4 − 1)−1 + P (r)r−1(r4 − 1)−3/2,

u3 =
1

4
r−4(r4 − 1)−1 − 3r4 − 1

4r5(r4 − 1)3/2
P (r) (2.13)

P (r) =

∫ r

1

dρ
√

ρ4 − 1
(2.14)

H(r) =
m2

2l6

∫ ∞

r
ρ(2u2(ρ)u3(ρ) − 3u3(ρ))dρ. (2.15)

The parameter l is similar to ǫ in the deformed conifold [7, 35, 38] and gs is the string

coupling constant.

The differential element Dµi is

Dµi = dµi + ǫijkA
jµk (2.16)

where the µi are coordinates on a unitless R
3 constrained to a unit S2 surface, µiµi = 1.

The fluxes associated with the solution are:

H3 =
m

l
a2u1hdr ∧X2 +

m

l
b2u2hdr ∧ J2 +

m

l
ab2u3X3, C1 = 0 (2.17)

F4 = g−1
s d3x ∧ dH−1 +mg−1

s G4, (2.18)

G4 = ab2u3 ǫijk µ
i hdr ∧Dµj ∧ Jk + a2b2u2X2 ∧ J2 +

1

2
b4u1J2 ∧ J2 (2.19)

where d3x ≡ dx0 ∧ dx1 ∧ dx2.

The Ai are SU(2) Yang-Mills instanton one forms living on the S4

Ai = AiαdΩ
α
4 , dΩα

4 = (dψ, dχ, dθ, dφ). (2.20)

and compose an anti-symmetric SU(2) Yang-Mills two form, J i,

J i = dAi +
1

2
ǫijkA

j ∧Ak, (2.21)

which satisfies the algebra of the unit quaternions,

ĝγρJ iαγJ
j
ρβ = −δij ĝαβ + ǫijkJ

k
αβ , (2.22)

where ĝαβ is the metric for an S4:

dΩ2
4 ≡ ĝαβdΩ

α
4 dΩ

β
4 = dψ + sin2 ψ(dχ2 + sin2 χ(dθ2 + sin2 θdφ2)). (2.23)

As in [4, 7], we select the J i to be

J1 = − sinψ dψ ∧ dχ− sin2 ψ sin2 χ sin θdθ ∧ dφ (2.24)

J2 = − sinψ sinχ dψ ∧ dθ − sin2 ψ sinχ sin θdφ ∧ dχ (2.25)

J3 = − sinψ sinχ sin θdψ ∧ dφ− sin2 ψ sinχdχ ∧ dθ (2.26)

– 8 –
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and we select the gauge where the solution for Ai is

A1 = cosψdχ+ cos θdφ

A2 = cosψ sinχdθ − cosχ sin θdφ

A3 = cosψ sinχ sin θdφ+ cosχdθ (2.27)

We use the relations given in eq. (2.2) to calculate B2 and C3. In calculating B2,

the identities in eq. (2.11) are very helpful. Using these, we solve for B2, up to a total

derivative, to be

lB2 = m

(
∫ r

1
f1(u)du

)

X2 +m

(
∫ r

1
f2(r)du

)

J2

f1(u) = a2(u)u1(u)h(u), f2(u) = b2(u)u2(r)h(u). (2.28)

Notice that this vanishes when r = 1. This will be important for our ensuing calculations

as it is where we will position our probe D4-brane. We choose the following solution for C3:

C3 = −x
2dr ∧ dx0 ∧ dx1

gsH(r)2
+

3m

8gs
ξ(ψ)dΩ3 +

m

2gs
u2(r)b(r)

2a(r)2ǫijkµ
iDµj ∧ Jk (2.29)

ξ(ψ) =

∫ ψ

0
sin3 u du, dΩ3 ≡ sin2 χ sin θ dχ ∧ dθ ∧ dφ, (2.30)

which is the same as that chosen in [7], up to a total derivative.

The constant m is proportional to the number N of stacked fractional D2-branes

that the background describes, which by the gauge/gravity correspondence, it is also the

number N of colors for the dual supersymmetric SU(N) gauge theory. We can calculate

the proportionality constant by using the Dirac quantization condition [7]

∫

S4

F4 = 8π3α′3/2N, (2.31)

and the r → 1 limiting behavior for G4

∫

G4 → 3

8

∫

dΩ4. (2.32)

Using these two conditions eq. (2.18) gives m = 8πα′3/2gsN .

Also, we must mention that there is another CGLP solution. To acquire the other

solution, dΩ2
4 can be substituted for a metric over CP

2. In this paper we will work only

with the 4-sphere, dΩ2
4.

2.3 A coordinate transformation

There is a singularity in the metric, eq. (2.8), at r = 1, because the function h(r), eq. ( 2.12),

blows up here. This can be remedied by applying the coordinate transformation

τ =
√
r − 1. (2.33)

– 9 –
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Now the point r = 1 is described by τ = 0 and the metric becomes

ds27 = l2
(

f(τ)2dτ2 + a2(Dµi)2 + b2dΩ2
4

)

f(τ) =
2τ

√

1 − (1 + τ2)−4
. (2.34)

Notice that f(τ) is finite as τ → 0. Here are the expansions of all the aforementioned

relevant functions in the τ → 0 limit.

a(r(τ)) = τ +O(τ3), b(r(τ)) =
1√
2
(1 + τ2),

u1(r(τ)) =
3

2
− 7τ2 +O(τ4), u2(r(τ)) = −1

4
+

7

10
τ2 +O(τ4),

u3(r(τ)) = −1

4
+

7

5
τ2 +O(τ4), f(τ) = 1 +

5

4
τ2 +O(τ4),

H(r(τ)) = H0 −H2τ
2 +O(τ4), H0 =

m2

l6
I0, H2 =

m2

l6
7

16
,

I0 ≡
∫ ∞

1
ρ(2u2(ρ)u3(ρ) − 3u3(ρ))dρ ≈ 0.10693 . . . (2.35)

One can use these expansions to show that B2 and C3 become, under the coordinate

transformations eq. (2.33),

B2 = −m
8l
τJ2 +O(τ3) (2.36)

C3 = −2x2τdτ ∧ dx0 ∧ dx1

gsH(r(τ))2
+

3m

8gs

(

ξ(ψ)dΩ3 −
1

6
τ2ǫijkµ

iDµj ∧ Jk
)

+O(τ4) (2.37)

2.4 Calculation of the k-string tension

We now outline the calculation of the k-string tension already presented by [7]. We label

the world volume coordinates of the probe D4-brane as

ζa = (t, x, χ, θ, φ), (2.38)

where we are using the static gauge, and have fixed five of the bosonic supergravity coor-

dinates to these D4-brane coordinates:

Xµ = (t, x, x2, ψ, χ, θ, φ, µ1, µ2, µ3, τ). (2.39)

These 11 coordinates are really 10 independent bosonic coordinates, as the µ’s are con-

strained to (µi)2 = 1.

We have then, the low energy action for the probe D4-brane, embedded in the

CGLP background:

S(b) = −µ4

∫

d5ζ e−Φ
√

− det (gab + Fab) + µ4

∫

F ∧C3. (2.40)

Here, B2 and C3 have been pulled back to the D4-brane, the same way as the in-

duced metric:

gab =
∂Xµ

∂ζa
∂Xν

∂ζb
Gµν . (2.41)
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We also turn on a U(1) gauge flux on the D4-brane

2πα′H
1/2
0 F = E dt ∧ dx (2.42)

Since our D4-brane is placed at τ = 0, where B2 = 0, F becomes simply

H
1/2
0 F = H

1/2
0 (2πα′F ) = E dt ∧ dx (2.43)

We examine the action eq. (2.40) in static gauge, eq. (2.39), and at the classical solution

τ = x2 = µ1 = µ2 = 0 µ3 = 1 ψ ≡ ψ0. (2.44)

Here we calculate the induced metric to be

ds20 = gabdζ
adζb = H

−1/2
0 (−dt2 + dx2) +

6

R
dΩ2

3 (2.45)

whose scalar curvature is

R =
12

H
1/2
0 l2

csc2 ψ0. (2.46)

At the classical solution, eq. (2.44), eqs. (2.36) and (2.37) become

B2 = 0, C3 = C
(0)
3 ≡ 3m

8gs
ξ(ψ)dΩ3. (2.47)

Plugging all of this into the action, eq. (2.40), and integrating over x, χ, θ, and φ,

results in an effective action

S
(b)
0 =

∫

dtL, (2.48)

L = −αNL
√

1 − E2 sin3 ψ + qLNEξ(ψ)

α =
l3

2
√

2πmα′
, q =

3

23/2I
1/2
0

α (2.49)

where L is the periodic length of the probe D4-brane’s x-direction. Choosing a gauge

where F01 = Ȧx, leaves us with one conjugate variable with which to perform the Legendre

transformation on the Lagrangian eq. (2.48)

H =
∂L
∂Ȧx

Ȧx − L (2.50)

Because of the periodicity in the field E, the conjugate momentum to Ax is quantized

to an integer k [7]:

2πα′H
1/2
0

∂L
∂E

=
∂L
∂Ȧx

= kL. (2.51)

With this, we find the Hamiltonian, eq. (2.50), to be

H = αNL

√

sin6 ψ +
q2

α2

(

4k

3N
− ξ

)2

, (2.52)
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Minimization with respect to ψ results in the condition

4k

3N
= ξ(ψ0) + 3

α2

q2
sin2 ψ0 cosψ0 (2.53)

and the minimized Hamiltonian

Hmin = TL = αNL sin2 ψ0

√

sin2 ψ0 + (3α/q)2 cos2 ψ0

α/q ≈ 0.3083 (2.54)

where T is the k-string tension. Note that the parameter k is interpreted as the k

quark-anti-quark pairs in k-strings. The tension, eq. (2.54), and minimization condition,

eq. (2.53), form a transcendental equation which can be solved numerically for given k

and N .

A similar, back of the envelope2 calculation in the Maldacena-Nastase(M-Na) back-

ground [29], leads one to a sine law:

T ∼ N sin
πk

N
. (2.55)

Table 1 compares the tension calculated from the CGLP background eq. (2.54) to the

sine-law, eq. (2.55), Casimir law, and various results from the lattice calculations and

Hamiltonian formulation.

3 Fluctuations of the classical CGLP solution

Employing the same techniques as in [10], we will now fluctuate around the classical solu-

tion and calculate the one loop corrections to the classical energy, eq. (2.54), E1. Follow-

ing [10, 39, 40], we calculate this correction to be given by the natural log of the functional

determinate of the quadratic fluctuation of the partition function, Z2:

eiE1T = Z2 =

∫

DXDADΘ̄DΘeiS2 (3.1)

where S2 is the part of the probe D-brane action quadratic in the fluctuations.

To calculate this path integral, one would need to remove the gauge degrees of free-

dom from symmetries such as U(1) gauge invariance of the gauge fields, diffeomorphism

invariance of the probe D-brane, and κ-symmetry of the supersymmetric D-brane action,

via a Fadeev-Popov gauge fixing technique. We instead use the semi-classical techniques

of [10, 39, 40], and simply solve the gauge fixed equations of motion for the quadratic

fluctuations, and sum over the resulting eigenvalues:

E1 = E
(b)
1 + E

(f)
1 (3.2)

E
(b)
1 =

1

2

∑

ω(b) E
(f)
1 = −1

2

∑

ω(f), (3.3)

2We thank A. Armoni for a discussion of this point and its overall relevance.
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where E
(b)
1 is the bosonic energy correction and E

(f)
1 is the fermionic energy correction.

We now seek to the find the equations of motion for the quadratic fluctuations. The

general fluctuations will be given by

Xµ = Xµ
0 + δXµ bosons (3.4)

Aa = A(0)
a + δAa U(1) gauge fields (3.5)

Θ = 0 + δΘ fermions (3.6)

We will first concentrate on the bosonic fluctuations. For fermionic fluctuations, we will

later look to Martucci and collaborators [41–44] to find the proper type IIA supergravity

fermionic action.

Through the procedure outlined above, we will find two types of oscillations: massive

and massless:

ω =
√

p2 +m2 + f(p), massive,

ω = p, massless, (3.7)

where m is the mass of the oscillation and f(p) is some function of p = nπ/L. As we expect

the propogator for massive modes to be exponentially suppressed by a factor e−mL , we

do not expect massive modes to contribute to the Lüscher term for large quark separation

L. Our calculation for the one loop bosonic energy will support this claim. Based on this,

we will assume that only massless modes will contribute to the fermionic one loop energy

as well.

3.1 Bosonic fluctuations

Of the 10 independent bosonic coordinates, we fluctuate only five of them: the five not

statically set to the D4-branes world volume:

x2(ζ) = 0 + δx2(ζ), ψ(ζ) = ψ0 + δψ(ζ), τ(ζ) = τ0 + δτ(ζ), µi(ζ) = µi0 + δµi(ζ)

(3.8)

where the subscript zero, as in µi0, refers to the classical value for the field, specified in

eq. (2.44). Under this fluctuation, the induced metric becomes, to quadratic order in

the fluctuations

ds2 =ds20 + ds21 + ds22 (3.9)

ds21 =H
1/2
0

l2

2
sin(2ψ0)dΩ

2
3δψ (3.10)

ds22 =

(

H
−1/2
0

∂δx2

∂ζa
∂δx2

∂ζb
+H

1/2
0 l2

(

∂δτ

∂ζa
∂δτ

∂ζb
+

1

2

∂δψ

∂ζa
∂δψ

∂ζb

))

dζadζb+

+ δτ2

[

H2

2H
3/2
0

(−dt2 + dx2) +H
1/2
0 l2

(

AiαA
i
βdΩ

α
3 dΩ

β
3 + sin2 ψ0(1 − H2

4H0
)dΩ2

3

)

]

+

+ δψ2H
1/2
0

l2

2
cos(2ψ0)dΩ

2
3 i = 1,2, (3.11)

– 13 –



J
H
E
P
1
1
(
2
0
0
9
)
0
6
4

B2 becomes

B2 = B
(1)
2 +B

(2)
2 (3.12)

B
(1)
2 =

m

8l
sin2 ψ0 sinχ δτ dχ ∧ dθ (3.13)

B
(2)
2 =

m

8l
δτ

(

δµ1 sin2 ψ0 sin2 χ sin θ dθ ∧ dφ+ δµ2 sin2 ψ0 sinχ sin θ dφ ∧ dχ+

+ sinψ0 sinχ sin θ
∂δψ

∂ζa
dζa ∧ dφ+ δψ sin(2ψ0) sinχ dχ ∧ dθ

)

, (3.14)

and C3 becomes

C3 = C
(0)
3 + C

(1)
3 + C

(2)
3 , (3.15)

C
(1)
3 =

3m

8gs
δψ sin3 ψ0 dΩ3, (3.16)

C
(2)
3 =

m

16gs

(

9 sin2 ψ0 cosψ0δψ
2 −

A1
χJ

1
θφ +A2

θJ
2
φχ

sin2 χ sin θ
δτ2

)

dΩ3 (3.17)

The fluctuation, eq. (3.4), leads to a simple expansion for the U(1) gauge field:

F =
E

2πα′H
1/2
0

dt ∧ dx+ δF,

δF = (∂aδAb)dζ
a ∧ dζb. (3.18)

As the dilaton depends on τ through eq. (2.9), the dilaton value, to second order in

the tau fluctuations, becomes

e−Φ = e−Φ0

(

1 +
H2

H0
δτ2

)

(3.19)

eΦ0 = gsH
1/4
0 (3.20)

Using eq. (3.9) through eq. (3.19), we calculate the bosonic action, eq. (2.40), to second

order in the fluctuations:

S(b) = S
(b)
0 + S

(b)
1 + S

(b)
2 , (3.21)

S
(b)
1 =

∫
√

− det(g(eff))d5ζ k c1 δFtx, (3.22)

S
(b)
2 = −

∫
√

− det(g(eff))d5ζ

{

cx∇aδx
2∇aδx2 + cψ

[

∇aδψ∇aδψ − R

2
δψ2

]

+

+ cτ
[

∇aδτ∇aδτ +m2
τ (χ, θ)δτ

2
]

+ cA

[

1

16π
δF abδFab + jaδAa

]

+

+total derivatives

}

, (3.23)
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where the covariant derivatives are with respect to g(eff), an effective metric on

the D4-brane

ds2 = g
(eff)
ab dζadζb =

1

gxx
(−dt2 + dx2) +

6

R
dΩ2

3,

gxx =
123A2l6

H2
minI

2
0R

3m4
, (3.24)

where R is the same scalar curvature as in eq. 2.46. The U(1) gauge current ja, and

mτ (χ, θ) are

ja =

(

−Qψ∇xδψ, Qψ∇tδψ, Qτ
∇θ(sin θδτ)

sinχ sin θ
, −Qτ

∇χ(sinχ δτ)

sin2 χ
, 0

)

, (3.25)

m2
τ (χ, θ) = m2

τ0 +
R

6
csc2 χ csc2 θ, (3.26)

and the various constants are

cx =
µ4R

3/2l3Hmin

48
√

3gsA
=

2l4

I0m2
cψ =

l4

I0m2
cτ =

l3

32I1
0/2π

3mα′2
cA,

Qτ =
3R

4I
1/2
0 π2122α′

, Qψ =
9H3

minI
9/4
0 R9/2m11/2

8
√

6A3π2l15/2125α′

m2
τ0 =

l

16mI
3/2
0

(1 + 8I0) +
7

24
R, c1 =

(

Hmin

A

)2(R

12

)9/2 I2
0m

4

2π2l3
. (3.27)

Clearly, S
(b)
1 is an integral over total derivatives. This confirms that we are truly

fluctuating around a classical solution. The second order action, S
(b)
2 , as it stands, is

difficult to acquire eigenvalues from, as can be seen in the equations of motion from this

action which are listed in appendix A. There we solve one of the equations of motion, and

discuss solutions of the others.

To calculate the Lüscher term, we integrate out the spherical degrees of freedom, χ,

θ, and φ, which will leave us with the same number of massless modes as before. Since

the Lüscher term only depends on massless modes this process should lead us to the same

Lüscher term as would be calculated from the full five dimensional theory. This was

explicitly found to be the case in [10] where the massless modes were independent of the

angular degrees of freedom.

To proceed with this integration, we consider the fluctuations to be independent of the

S3 variables,

δXµ = δXµ(t, x), δAa = δAa(t, x) (3.28)
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and we integrate out the S3 from the action eq. (3.23). This results in an effective action

S
(b)
2eff = −V3

∫

dt dx

{

cx∇mδx
2∇mδx2 + cψ

[

∇mδψ∇mδψ − R

2
gxxδψ

2

]

+

+ cτ
[

∇mδτ∇mδτ +m2
τeδτ

2
]

+ cA

[

1

gxx16π
δFmnδFmn + gxxj

mδAm

]

+

+
cA
16π

(∇mδAχ∇mδAχ + 2∇mδAθ∇mδAθ + I1∇mδAφ∇mδAφ)+

+ total derivatives

}

, (3.29)

where the indices m and n now sum only over the coordinates t and x, and are raised and

lowered by the two dimensional Minkowski metric

ηmndζ
mdζn = −dt2 + dx2, (3.30)

and the effective δτ mass, mτe, the constant V3, and the integral, I1 are

m2
τe = V3

(

m2
τ0 +

R

6
I1

)

, V3 = 2π2

(

R

6

)3/2

, I1 =

∫ π

0
csc θ dθ. (3.31)

The equations of motion of the action, eq. (3.29), are

∇2δx2 = 0 (3.32)

∇2δψ +
R

2
gxxδψ +

cAgxxQψ
2cψ

δFtx = 0 (3.33)

∇2δτ −m2
τeδτ = 0 (3.34)

∇2δAi = 0, i = χ, θ, φ (3.35)

∇mδF
mn = 4πgxxj

n (3.36)

To solve these equations, we move to Fourier space

(ω2 − p2)δx2 = 0 (3.37)

(ω2 − p2 +
R

2
gxx)δψ − i

cAgxxQψ
2cψ

(ωAx + pAt) = 0 (3.38)

(ω2 − p2 −m2
τe)δτ = 0 (3.39)

(ω2 − p2)δAi = 0, i = χ, θ, φ (3.40)

p2δAt + pωAx = −i4πgxxQψpδψ (3.41)

ω2δAx + pωAt = −i4πgxxQψωδψ, (3.42)

and work in temporal gauge, δAt = 0. This leaves us with six eigenvalues

ω2 =











p2 4 fold degenerate

p2 +m2
τe

p2 +m2
ψ

,

– 16 –



J
H
E
P
1
1
(
2
0
0
9
)
0
6
4

where

m2
ψ =

R

2
− cA

2cψ
4πQ2

ψg
2
xx (3.43)

45.9992
l

m
< m2

ψ <∞. (3.44)

The calculation for the one loop correction to the bosonic k-string energy, E
(b)
1 is given

in appendix B; the result for large quark separation L is

E
(b)
1 = − π

6L
− 1

4
(mτe +mψ). (3.45)

The Lüscher term, −π/6L, is the same as the expected value, as N increases, for lattice

calculations done in [17].

3.2 Fermionic fluctuations

Following the series of papers [41–44], we use the κ-symmetry fixed fermionic action for

the probe D4-brane found in [44]:

S(f) =
µ4

2

∫

d5ζe−Φ
√
− detMΘ̄Γ′

D4

[

(M−1)abΓaD
(0)
b + (M−1)abΓbWa − ∆

]

Θ, (3.46)

where the definitions are found in appendix C.

Applying the fluctuation eq. (3.4) to the fermions leads us to an action second order

in the fermionic fluctuations,

S
(f)
2 =

µ4

2

∫

d5ζe−Φ
√
− detMδΘ̄Γ′

D4

[

(M−1)abΓaD
(0)
b + (M−1)abΓbWa − ∆

]

δΘ. (3.47)

As we did in the bosonic case, we integrate out the S3, resulting in the effective quadratic

fermionic action

S
(f)
2eff ∝

∫

dtdxδΘ̄Γ′
D4

((M−1)mnΓm∂n +Mf )δΘ, m, n = t, x. (3.48)

The matrix Mf is given in appendix C. We solve the Euler equation from this Lagrangian

by Fourier transform

Γ′
D4

(i(M−1)mnΓmpn +Mf )δΘ, m, n = t, x pt = −ω, px = p. (3.49)

The eigenvalue solutions to this equation, outlined in appendix C, are

ω = ±
√

p2 + α1 ± α2,

ω = ±
√

p2 + α3 ± α4,

ω =







±
√

α7(p) + α5(p) ± α+
6 (p)

±
√

α7(p) − α5(p) ± α−
6 (p)

. (3.50)

These modes are all massive, and we argue that they will not contribute to the Lüscher

term, as their propogators will go as e−mL, where m is the mass of the oscillations and L

is the large quark separation.
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4 Conclusion

We analyzed the ground state and one loop quantum corrections for SU(N) k-strings. For

the ground state, we compared string theory results to lattice gauge theory and Yang-Mills

theory results. We investigated the hypothesis that D4-branes in the CGLP background

would describe quarks in the anti-symmetric representation and that D3-branes in the M-

Na background would describe quarks in the symmetric representation. For the tensions,

we found, in fact, that both of these were more closely related to anti-symmetric quarks.

We concluded that more research must be done with other probes like D2-branes and D6 in

the CGLP background and D5-branes in the M-Na background to find a clearer correlation

with symmetric, anti-symmetric, or mixed quark representations.

Furthermore, we analyzed the fluctuations from the ground state for SU(N) k-strings

in 2 + 1 dimensions from a duality relation with a D4-brane probing the type IIA CGLP

supergravity background. We found equations of motion for bosonic and fermionic fluctu-

ations that are relevant for the Lüscher term. We found the Lüscher term was −π/6L, the

same as the expected value, as N increases, for lattice calculations done in [17]. Interest-

ingly, this is also the same as in our previous investigation for 3+1 k-strings.3
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A Five dimensional Bosonic equations of motion for the fluctuations

Applying the variational principle to the action, eq. (3.23), results in the field equations:

∇2δx2 = 0 (A.1)

∇2δψ +
R

2
δψ +

cAQψ
2cψ

δFtx = 0 (A.2)

∇2δτ −m2
τ (χ, θ)δτ +

cAQτ
2cτ

cscχδFθχ = 0 (A.3)

∇aδF
ab − 4πjb = 0, (A.4)

where ∇a is the covariant derivative compatible with eq. 3.24.

The solution to eq. (A.1) is

δx2 =

∫

dωdp
∑

n≥l≥|m|

x̃(n,l,m)(p, ω)ei(px−ωt)Y nlm(χ, θ, φ), (A.5)

3Here we correct a factor of a half missing in [10].
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where the Y nlm(χ, θ, φ) are the spherical harmonics on an S3 [46]

Y nlm(χ, θ, φ) = cnl
1√

sinχ
P
l+1/2
n+1/2(cos χ)Y (lm)(θ, φ),

cnl =

√

(n+ 1)(n + l + 1)!

(n− l)!
, (A.6)

and P ln(x) are the associated Legendre polynomials. The S3 spherical harmonics

Y nlm(χ, θ, φ) satisfy the eigenvalue problem

∇̃2Y nlm(χ, θ, φ) = −n(n+ 2)Y nlm(χ, θ, φ), (A.7)

where ∇̃2 is the Laplacian for an S3 whose action on scalar functions such as Y nlm(χ, θ, φ)

is explicitly given by

∇̃2 =
1

sin2 χ

(

∂χ(sin
2 χ∂χ) +

1

sin θ
∂θ(sin θ∂θ) +

1

sin2 θ
∂2
φ

)

. (A.8)

With that said, solving eq. (A.1) with the solution eq. (A.5) results in the eigen-

value problem
[

1

gxx
(ω2 − p2) − R

6
n(n+ 2)

]

x̃ = 0 (A.9)

The rest of the equations prove quite difficult and require perturbation theory to solve;

their solution is not given here.

B Calculation of the one loop bosonic energy

Following [10, 39, 40], we define the one loop bosonic energy as a sum over the bosonic

frequencies, eq. (3.43),

E
(b)
1 ≡ 1

2

∑

p

(

4p+
√

p2 +m2
τe +

√

p2 +m2
ψ

)

. (B.1)

To describe quark-anti-quark sources affixed to the end of the string, we use vanishing

boundary conditions

p = nπ/L (B.2)

As in [10], we use ζ-function regularization to regularize the massless modes

∞
∑

n=1

n −→ ζ(−1) = − π

12
. (B.3)

For the massive modes, we must use a regularization procedure for the sum

∞
∑

n=1

(n2 +M2)−s. (B.4)
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We do this in two distinct ways, showing their equivalence in the large M ∝ L limit. First,

we regulate the sum by using a cutoff

∞
∑

n=1

(n2 +M2)−s −→
[M ]
∑

n=1

(n2 +M2)−s (B.5)

where [M ] is the largest integer less than M . Now we are able to use the binomial expansion

[M ]
∑

n=1

(n2 +M2)−s = M−2s

[M ]
∑

n=1

∞
∑

q=0

(−s
q

)

( n

M

)2q

= M−2s
∞
∑

q=0

(−s
q

)

M−2q

[M ]
∑

n=1

n2q

≈M−2s
∞
∑

q=0

(−s
q

)

M−2q
∞
∑

n=1

n2q

−→M−2s
∞
∑

q=0

(−s
q

)

M−2qδ0qζ(0)

= −M
−2s

2
(B.6)

where we have again used ζ-function regularization, and the approximation [M ] → ∞ is

valid for large M ∝ L, large L corresponding to large quark separation.

Next, we regulate the sum with the prescription used in [47]. First, we split the sum up

∞
∑

n=1

(n2 +M2)−s = − 1

2
M−2s +

1

2

∑

n∈Z

(n2 +M2)−s

= − 1

2
M−2s + 2

πs(M2)−s/2+1/4

Γ(s)

∞
∑

n=1

ns−1/2Ks−1/2(2πnM)+

+
1

2

π1/2

Γ(s)
(M2)−s+1/2Γ(s− 1/2), (B.7)

and then regulate by redefining the sum, eq. (B.4), by ignoring the third term in the last

expression in eq. (B.7), which diverges in the s→ −1/2 limit:

∞
∑

n=1

(n2 +M2)−s −→ −1

2
M−2s + 2

πs(M2)−s/2+1/4

Γ(s)

∞
∑

n=1

ns−1/2Ks−1/2(2πnM) (B.8)

In the large M ∝ L limit this becomes

− 1

2
M−2s

(

1 − 2
πsM s+1/2

Γ(s)

∞
∑

n=1

ns−1/2e−2πnM ((nM)−1/2 + O((nM)−3/2))

)

= −M
−2s

2

(

1 − 2
πs

Γ(s)

∞
∑

n=1

e−2πnM (ns−1M s + O(ns−2M s−1))

)

(B.9)
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The sum in B.9 is exponentially suppressed even without further regularization for s =

−1/2, therefore, we recover the same result as with the cut off method, eq. (B.9), for

s = −1/2, and in the large M ∝ L limit. We conclude that these bosonic massive modes

contribute only a constant to the energy in the large M ∝ L limit, and therefore do not

contribute to the Lüscher term. We find for large quark separation L, the one loop bosonic

energy is

E
(b)
1 = − π

6L
− 1

4
(mτe +mψ). ( 3.45)

C Fermionic Dp-brane action

Throughout this paper, and unless otherwise noted, Latin indices a, b, c, . . . are D-brane

indices, with the exception of i, j, and k, which will always refer to the unit S2 coordinates,

µi. Greek indices, α, β, µ, ν, . . . are 10 dimensional curved indices, and underlined Greek

indices, µ, ν, α, . . . are 10 dimensional flat indices.

The fermionic action for the quadratic fluctuations was found in [41–44]. It is given by

S(f) =
µ4

2

∫

d5ζe−Φ
√
− detMδΘ̄Γ′

D4

[

(M−1)abΓaD
(0)
b + (M−1)abΓbWa − ∆

]

δΘ. ( 3.47)

where δΘ is a 32 component spinor, constrained by

Γ11δΘ = δΘ. (C.1)

where Γ11 = Γ0123456789, and Γµ1µ2...µn is the totally antisymmetric product of gamma

matrices. The flat gamma matrices satisfy a Clifford algebra

{Γµ,Γν} = 2ηµν , (C.2)

where ηµν is the 10 dimensional Minkowski metric. A useful consequence of this anti-

commutation relation is the following identity

Γµναβ = ΓµΓνΓαΓβ, µ 6= ν 6= α 6= β, (C.3)

which can be generalized to any number of gamma matrices.

We define ∆ = ∆(1) + ∆(2), M = g + F , F4 = F4 +H3 ∧ C1, F2 = dC1, where

D(0)
a = ∂a +

1

4
Ω
µν
a Γµν +

1

4 · 2!HaµνΓ
µν (C.4)

Wa = −1

8
eΦ
(

1

2
FµνΓ

µν +
1

4!
FµναβΓµναβ

)

Γa (C.5)

∆(1) =
1

2
(Γµ∂µΦ +

1

2 · 3!HµαβΓ
µαβ) (C.6)

∆(2) =
1

8
eΦ
(

3

2!
FµνΓ

µν − 1

4!
FµναβΓµναβ

)

(C.7)

Γ′
Dp

= 1 −
√− det g√
− detM0

Γ
(0)
Dp

(Γ11)p/2+1
∑

q≥0

(−1)q(Γ11)q

q!2q
Γa1a2...a2qFa1a2 . . .Fa2q−1a2q

(C.8)

Γ
(0)
Dp

=
ǫa1a2...ap+1

(p + 1)!
√− det g

Γa1a2...ap+1
(C.9)
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and ǫa1a2···ap+1 is a density, i.e., takes values of ±1, or 0.

The 10 dimensional curved Γµ’s are related to the 10 dimensional flat Γµ’s by the frame

fields, Γµ = e
µ
µΓµ, and the D-brane Γa’s are pulled back from the curved 10 dimensional

Γµ’s: Γa = ∂Xµ

∂ζa Γµ.

The frame-fields,

Gµν = e
µ
µe
ν
νηµν (C.10)

for the CGLP background can be written in a 10 dimensional representation as

e
0
0 = e

1
1 = e

2
2 = H−1/4, e

9
9 = lfH1/4,

e
3
3 = csc θe

4
4 = cscχ csc θe

5
5 = cscψ cscχ csc θe

6
6 = lbH1/4,

e7α = lH1/4 a
∂µi

∂θ̃
Ajαǫ

ijkµk, e8α = lH1/4a csc θ̃
∂µi

∂φ̃
Ajαǫ

ijkµk, α = 4, 5, 6 (C.11)

with all others zero and with parametrization of the unit S2, (µi)2 = 1, given by

µ1 = sin θ̃ cos φ̃, µ2 = sin θ̃ sin φ̃, µ3 = cos θ̃ (C.12)

In the above, the 10 independent bosonic coordinates are numbered 0 . . . 9 as

Xµ = (t, x, x2, ψ, χ, θ, φ, θ̃, φ̃, τ) (C.13)

We use the frame fields to calculate the spin connection for the 10-dimensional

bosonic space

Ω
αβ
µ = Ω

βα
µ = ηβρeαα

(

∂µe
α
ρ + e ν

ρ Γαµν

)

(C.14)

where the Christoffels, Γαµν , and the inverse frame-fields, e µ
µ , are given by

Γαµν =
1

2
Gαβ (∂µGβν + ∂νGβµ − ∂βGµν)

e µ
µ = ηµνG

µνeνν (C.15)

With this, we calculate the spin connection for the CGLP background. Pulling its lowered

index back to the D4-brane and evaluating it at the classical solution, we find the only

non-vanishing components to be

Ω 98
χ = Ω 43

χ = cosψ0, Ω
53
θ = Ω

79
θ = cosψ0 sinχ,

Ω
54
θ = Ω

87
θ = cosχ, Ω

63
φ = Ω

87
φ = cosψ0 sinχ sin θ,

Ω
64
φ = Ω

97
φ = cosχ sin θ, Ω

65
φ = Ω

98
φ = cos θ, (C.16)

With this we calculate the term in the action which contains the spin connection to be

1

4

(

M−1
)ab

ΓaΩ
µν

b Γµν = Mc + cotχ M1 + cscχ cot θ M2

Mc =
1

2

√

R

6
cosψ0(3Γ3 + Γ498 + Γ579 + Γ687)

M1 =
1

2

√

R

6
(2Γ4 + Γ587 + Γ697)

M2 =
1

2

√

R

6
(Γ5 + Γ698) (C.17)
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This is the only term in the action that has θ, χ dependence, modulo the measure. Many

of the formulas in eq. (C.4)–eq. (C.9) simplify

Wa = −1

8
eΦ0

1

4!
FµναβΓ

µναβΓa (C.18)

∆(1) =
1

4!
HαµνΓ

αµν , ∆(2) = − 1

8 · 4!e
Φ0FαβµνΓ

αβµν (C.19)

Γ′
D4

= 1 − ǫabcdeΓabcde

5!
√
− detM

Γ11

(

1 − 1

2
Γ11ΓabFab

)

, (C.20)

all of which are, again, χ, θ independent.

As in the bosonic case, we investigate S3 independent solutions for the

quadratic fluctuations

δΘ = δΘ(t, x) (C.21)

leaving us with an action of the form

S
(f)
2eff ∝

∫

dtdx

∫

dχdθdφ sin2 χ sin θδΘ̄Γ′
D4

((M−1)mnΓm∂n +Mf+

+ cotχ M1 + cscχ cot θ M2)δΘ, m, n = t, x, (C.22)

where

Mf = Mc +
(

M−1
)ab
(

1

8
ΓaHbµνΓ

µν + ΓbWa

)

− ∆ (C.23)

Integrating out the S3 as before, it is easy to see that the terms proportional to M1

and M2 integrate to zero, leaving us with

S
(f)
2eff ∝

∫

dtdxδΘ̄Γ′
D4

((M−1)mnΓm∂n +Mf )δΘ, m, n = t, x. ( 3.48)

We solve the Euler equation from this action by Fourier transform

Γ′
D4

(i(M−1)mnΓmpn +Mf )δΘ, m, n = t, x pt = −ω, px = p. ( 3.49)

We now pick a representation for the 32 × 32 gamma matrices

Γ0 = iσ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ σ0, Γ1 = σ1 ⊗ σ1 ⊗ σ2 ⊗ σ0 ⊗ σ0

Γ2 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3, Γ3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2

Γ4 = σ1 ⊗ σ1 ⊗ σ3 ⊗ σ0 ⊗ σ0, Γ5 = σ1 ⊗ σ2 ⊗ σ0 ⊗ σ0 ⊗ σ0

Γ6 = −σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1, Γ7 = σ1 ⊗ σ3 ⊗ σ0 ⊗ σ0 ⊗ σ0

Γ8 = σ2 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0, Γ9 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ σ0 (C.24)

where ⊗ means tensor product, and the σµ are the Pauli spin matrices, augmented with

the identity:

σ0 =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

(C.25)
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This representation leaves us with a diagonal Γ11, and so through the constraint,

eq. (C.1), we are able to set the lower 16 components of δΘ to zero. At the same time, this

reduces the 32 equations in eq. (3.49) to 16 independent equations. These equations can

be reorganized into the following form

ωδΘ = HfδΘ (C.26)

where the Hamiltonian has the block diagonal form

Hf =







H1 0 0

0 H2 0

0 0 H3






, (C.27)

and H1 and H2 are 4 × 4 matrices, and H3 is an 8 × 8 matrix

H1 =











p 0 −ci ca
0 p cb −ci
−cj cc −p 0

cd −cj 0 −p











,H2 =











p 0 ci ce
0 p cf ci
cj cg −p 0

ch cj 0 −p











,

H3 =





























−p 0 cj −cc 0 0 −ck 0

0 −p −cd cj 0 0 0 −ck
ci −ca p 0 −cn 0 0 0

−cb ci 0 p 0 −cn 0 0

0 0 −ck 0 −p 0 −cj −cg
0 0 0 −ck 0 −p −ch −cj
−cn 0 0 0 − ci −ce p 0

0 −cn 0 0 −cf −ci 0 p





























(C.28)

where the c′s are constants.

The eigenvalues of Hf are

ω = ±
√

p2 + α1 ± α2 (C.29)

ω = ±
√

p2 + α3 ± α4 (C.30)

ω =







±
√

α7(p) + α5(p) ± α+
6 (p)

±
√

α7(p) − α5(p) ± α−
6 (p)

, (C.31)

where α1, α2, α3, and α4 are constants combinations of the c′s in C.28, and α5, α
±
6 , and α7
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are functions of p:

α7(p) = α
(0)
7 + α

(2)
7 p2,

α2
5 =

∑

n=0,2,4

α
(n)
5 pn + 4β1(p),

(α±
6 )2 = 2α2

5(p) − 3β1(p) ± β5(p),

β1(p) =
1

12

(

β3(p)

β2(p)
+ β2(p)

)

,

2β3
2(p) = β4(p) +

√

β3
4(p) − 4β3

3(p),

β3(p) =
∑

n=0,2,,8

β
(n)
3 pn,

β4(p) =
∑

n=0,2,,12

β
(n)
4 pn,

β5(p) = α−1
5

∑

n=0,2,,6

β
(n)
5 pn. (C.32)

Here, the α
(n)
i and β

(n)
i are constant combinations of the c′s from C.28.

From the regularization procedure used in the previous section for the bosons, we see

that the first two fermionic eigenmodes, eq. C.29 and eq. C.30, will contribute a constant

to the fermionic energy. The remaining eigenmodes, eq. C.31, prove to be very difficult

to regulate from their very complicated p-dependence. We assume that they will not

contribute to the Lüscher term, as they are massive, and the propogators will go as e−mL,

m being the mass of the eigenmode and L the large quark separation.
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